Oceanic excitations on polar motion: a cross comparison among models

Y. H. Zhou,1,4 J. L. Chen,2 X. H. Liao1,4 and C. R. Wilson2,3

1Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China. E-mail: yhzhou@shao.ac.cn
2Center for Space Research, University of Texas at Austin, Austin, TX 78712, USA
3Department of Geological Sciences, University of Texas at Austin, Austin, TX 78712, USA
4United Center for Astrogeodynamical Research, Chinese Academy of Sciences, Shanghai, China

SUMMARY
Recent studies based on various ocean general circulation models (OGCMs) demonstrate that the oceans are a major contributor to polar motion excitations. In this paper, we analyse and compare observed non-atmospheric polar motion excitations with oceanic angular momentum (OAM) variations determined from four OGCMs, which include the parallel ocean climate model (POCM), a barotropic ocean model (BOM), the Estimating the Circulation and Climate of the Ocean (ECCO) non-data-assimilating model (ECCO-NDA) and the ECCO data-assimilating model (ECCO-DA). The data to be analysed span a 5-yr overlapped period from 1993 to 1997. At annual timescale, considerable discrepancies exist between POCM and the other three models, which result mainly from differences in annual components of the forcing wind fields. At semi-annual timescale, however, POCM shows better phase agreement with observed non-atmospheric polar motion excitation than the other three ocean models. At intraseasonal timescales, ECCO-DA yields better agreement with observations, and reduces the variance of non-atmospheric excitations by ∼60 per cent, 10–20 per cent more than those explained by the other three models. However, at the very short periods of 4–20 days, the BOM estimates could explain about half of the observed variance, twice as much as that by ECCO-NDA, and also shows considerably better correlation with observations. Due to different modelling schemes and methods, significant discrepancies could arise with respect to the quality of modelling large-scale oceanic mass redistribution and current variation. A complete understanding of global oceanic contributions to polar motion excitation still remains a challenge.

Key words: excitation, ocean general circulation model (OGCM), oceanic angular momentum (OAM), polar motion.

1 INTRODUCTION
The motion of the Earth’s instantaneous rotation pole within the terrestrial reference frame is briefly referred to as the Earth’s polar motion (Lambeck 1980). Polar motion includes a linear trend (secular part), periodic changes of 12 months and 14 months, that is, the annual and Chandler wobbles, and quasi-periodic variations on intraseasonal, interannual and decadal time scales (e.g. Eubanks 1993; Zhou et al. 1998; Natsula et al. 2002). On timescales from a few days to a few years, polar motion is primarily driven by air and water mass redistribution and movement within the Earth system. Atmospheric winds and surface pressure changes are found to excite a significant portion of observed polar motion (e.g. Chao & Au 1991). Water mass redistribution within the oceans and continental water storage change are also believed to play major roles (e.g. Wahr 1983; Chen et al. 2000). Recent studies based on the parallel ocean climate model (POCM), the Estimating the Circulation and Climate of the Ocean (ECCO) non-data-assimilating model (ECCO-NDA), the ECCO data-assimilating model (ECCO-DA) and a barotropic ocean model (BOM) demonstrate that oceanic mass redistribution and circulation provide important contributions to the excitation of polar motion that has not been accounted for by the atmosphere, on seasonal, intraseasonal and interannual timescales (Ponte et al. 1998, 2001; Johnson et al. 1999; Ponte & Stammer 1999; Ponte & Ali 2002; Gross et al. 2003b; Chen et al. 2004).

Because of different modelling schemes and methods, discrepancies could arise with respect to the quality of modelling large-scale oceanic mass redistribution and current variation, which in turn affects the quantitative assessment of oceanic effects on the Earth’s polar motion. So far, quantitative assessment of the differences in estimating oceanic contributions to the polar motion among different ocean general circulation models (OGCMs) remains unclear. In
the following section, we compute geodetic polar motion excitation function by de-convolving observed polar motion series, using a state-of-the-art two-stage filter that produces better amplitude accuracy at high frequencies than traditionally used one-stage filter (Wilson & Chen 1996). Non-atmospheric polar motion excitation function is subsequently obtained by removing atmospheric angular momentum (AAM) contributions from observed polar motion excitations. In Section 3, we introduce oceanic angular momentum (OAM) function determined from four OGCMs, that is, POCM, BOM, ECCO-NDA and ECCO-DA. The four OAM functions and observed non-atmospheric polar motion excitation, within a 5-yr overlapped period from 1993 to 1997, are compared and analysed in Section 4. Finally, we summarize the results in Section 5.

2 NON-ATMOSPHERIC POLAR MOTION EXCITATIONS

2.1 ‘Observed’ polar motion excitations

In terrestrial coordinate system, polar motion is usually expressed as a complex function \(m(t) = m_x(t) + i m_y(t) \), where \(m_x(t) \) and \(m_y(t) \) are components along the Greenwich Meridian and the 90°E longitude, respectively. The excitation of polar motion is depicted as (Lambek 1980):

\[
m(t) + (i/\sigma_m)\Delta m(t) = \psi(t), \quad (1a)
\]

where \(\psi(t) = \psi_x(t) + i \psi_y(t) \) with \(\psi_x(t) \) and \(\psi_y(t) \) being the \(x \) and \(y \) components, respectively, of geodetic or ‘observed’ polar motion excitation function, \(\sigma_m = 2\pi F_c (1 + i/2Q) \) is the complex Chandler frequency, \(F_c \) is about 0.843 cycles yr\(^{-1} \), and \(Q \) is the damping factor. The transfer function of this equation, which is the ratio of the Fourier transform of \(m(t) \) to that of \(\psi(t) \) at frequency \(f \), is

\[
L_1(f) = \frac{\sigma_c}{\sigma_c - 2\pi f}. \quad (1b)
\]

The discrete version of eq. (1) was developed by Wilson (1985),

\[
\psi(t) = \frac{i \exp(-i\pi F_c T)}{\sigma_c T}[m(t + T/2) - \exp(i\sigma_c T)\Delta m(t - T/2)], \quad (2a)
\]

where \(T \) is the sampling interval. The corresponding transfer function is

\[
L_2(f) = \frac{-i\sigma_c T \exp(i\pi F_c - f)T}{1 - \exp(i\sigma_c - 2\pi f)T}. \quad (2b)
\]

The curve labelled (2b/1b) in Fig. 1 shows the error in the application of eq. (2a) relative to the exact result eq. (1a) for the case \(T = 1 \) day, \(F_c = 0.843 \) cycles per year and \(Q = 179 \). The amplitude difference is given by the ratio of amplitude response (2b)/(1b) minus 1. Obviously, the phase response of eq. (2b) almost perfectly duplicates the desired response of (1b), while the amplitude response deviates at high frequencies. For example, at the frequency of 0.3 cycles per day (in this example), the error of amplitude response could reach as much as ~20 per cent.

Wilson & Chen (1996) further designed a digital filter, which corrects the amplitude response error of (2a), but does not alter the phase. The zero-phase requirement is easily implemented by passing it over the data in both forward and reverse directions. The two-stage filter and its transfer function are

\[
\psi^1(t) = k_1 \exp(i\sigma_c T)\psi(t) + k_2 \exp(i2\sigma_c T)\psi(t - T)
+ k_3 \exp(i\sigma_c T)\psi^1(t - T) + k_4 \exp(i2\sigma_c T)\psi^1(t - 2T)
\]

\[
\psi^1(t) = k_1 \exp(i\sigma_c T)\psi(t) + k_2 \exp(i2\sigma_c T)\psi(t - T)
+ k_3 \exp(i\sigma_c T)\psi^1(t - T) + k_4 \exp(i2\sigma_c T)\psi^1(t - 2T)
\]

and

\[
L_3(f) = \frac{c_1 \exp(-i\sigma_c T) + c_2 \exp(-i2\pi f T) + c_3 \exp[i(\sigma_c - 4\pi f)T]}{1 - c_4 \exp(i(\sigma_c - 2\pi f)T)}, \quad (3b)
\]

where \(c_1 = 0.9304; c_2 = 0.5024; c_3 = 0.01861; c_4 = -0.4541; k_1 = 1/c_1 = 1.0748; k_2 = -c_4/c_1 = 0.4881; k_3 = -c_2/c_1 = -0.5400; \) and \(k_4 = c_2/c_1 = 0.0200 \). The superscript designation, \(\psi^1(t) \), indicates the excitation time-series after the first (forward) direction application to the output of filter (2a). Note that the eq. (3a) is a corrected version of eq. (4a) in Wilson & Chen (1996), in which \(\psi^1(t) \) is mistakenly typed as \(\psi(t) \) and vice versa. The filter is then applied a second time in the reverse direction. The final response is \(|L_3(f)|^2 \).

The curve labelled (3b/1b) in Fig. 1 displays the error associated with the application of eq. (2a) followed by eq. (3a). The two-stage filter method produces much better amplitude accuracy at the very high frequencies than previous generally used one-stage filter. Therefore, this approach should be applied when dealing with high-frequency polar motion variation, for instance, at frequencies above 0.1 cycles per day for 1-day interval data.

Observed polar motion time-series are from SPACE2002 (Gross 2003a), provided by the Jet Propulsion Laboratory (JPL). Daily SPACE2002 EOP time series are sampled at midnight and cover the period from 1976 to 2002. They are obtained through a Kalman filter combination of the Earth orientation measurements from advanced space-geodetic techniques including the lunar and satellite laser ranging, very long baseline interferometry, and the global positioning system. Observed polar motion excitations are computed using the above two-stage filter method (eqs 2a and 3a), with \(F_c = 0.843 \) cycles per year and \(Q = 179 \) (Wilson & Vicente 1990).

2.2 Atmospheric angular momentum excitations

Polar motion is excited by mass motion (e.g. winds and currents) and surface mass load (e.g. atmospheric pressure and oceanic bottom pressure) variations. The ‘geophysical’ polar motion excitation, \(\chi(t) = \chi_x(t) + i \chi_y(t) \), is a function of changes in relative angular momentum, \(h(t) = h_x(t) + i h_y(t) \), and of changes in the Earth’s inertia tensor, \(c(t) = \Delta I_{xx}(t) + i \Delta I_{xy}(t) \) (Gross et al. 2003b):

\[
\chi(t) = [1.61 h(t) + 1.12 \Omega c(t)]/(\Omega(C - A)), \quad (4)
\]

where \(\chi_x(t), \chi_y(t), h_x(t), h_y(t) \) and \(\Delta I_{xx}(t), \Delta I_{xy}(t) \) are the \(x \) and \(y \) components, respectively of \(\chi(t), h(t) \) and \(c(t) \). \(\Omega \) is the Earth’s mean angular velocity, \(C \) and \(A \) are the polar and equatorial moments of the inertia of the entire Earth. The factor of 1.61 accounts for effects of rotational deformation and core decoupling, and the factor of 1.12 includes the above two effects as well as the surface loading effect on the solid Earth (Wahr 1982; Gross et al. 2003b).

AAM time-series are provided by the International Earth Rotation Service (IERS) Special Bureau for the Atmosphere (SBA) (Salstein et al. 1993), and are computed using wind velocity and surface air pressure data derived from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis project (Kalnay et al. 1996). The angular momentum carried by the winds (the ‘wind’ term) is integrated from 1000 hpa at the surface to top of the model at 10 hpa, and the angular momentum due to surface pressure variations (the ‘pressure’ term) is computed based on the inverted barometer (IB) assumption (Salstein et al. 1993). The IB assumes that the ocean responds to the atmospheric loading isostatically. In order to match the temporal
resolution of the ‘observed’ polar motion excitations, the 6-hourly NCEP/NCAR reanalysis AAM results are averaged daily by summing five consecutive values using weights of 1/8, 1/4, 1/4, 1/4, and 1/8. Non-atmospheric polar motion excitations are readily acquired using the differences between ‘observed’ and atmospheric polar motion excitations.

3 OCEANIC ANGULAR MOMENTUM EXCITATIONS

The OAM excitations can be computed using velocities of ocean currents, sea level, temperature, salinity and ocean bottom pressure, estimated from OGCMs. The OAM excitations include two types of contributions, that is, the angular momentum change carried by ocean currents and the angular momentum change due to ocean bottom pressure (OBP) variations. In this study, we employ the OAM results determined from four OGCMs: the POCM, BOM, ECCO-NDA and ECCO-DA. The POCM (Stammer et al. 1996; Johnson et al. 1999), BOM (Ponte 1993; Ponte & Ali 2002) and ECCO-NDA (Gross et al. 2003b) OAM results are provided by the IERS Special Bureau for the Oceans (at http://euler.jpl.nasa.gov/sbo/). The ECCO-DA OAM results are the same as published by Chen et al. (2004).

POCM is a free-surface, wind-stress and heat-flux driven OGCM that is based on the primitive equations under the hydrostatic and Boussinesq approximations (Stammer et al. 1996; Johnson et al. 1999). It is forced by surface wind stresses and surface heat fluxes derived from the European Centre for Medium-Range Weather Forecasts (ECMWF). The model covers the global ocean from 75°S to 65°N with a horizontal resolution of 0.4° in longitude and average 0.25° in latitude and a vertical resolution of 20 layers. The model employs realistic coastlines and bathymetry. Data products are available every 3 days from 1988 to 1997.

BOM is a constant-density, shallow-water numerical model driven by NCEP/NCAR surface wind and barometric pressure fields (Ponte 1993; Ponte & Ali 2002). The configuration of the model has been optimized to explain sea level variance in the TOPEX/Poseidon altimeter data. The model includes an improved representation of topography and realistic coastlines. Simulated OAM time-series at daily intervals during the period of 1992 October to 2000 June are from Ponte & Ali (2002).

ECCO-NDA is based on the Massachusetts Institute of Technology general circulation model (Marshall et al. 1997a,b; Gross et al. 2003b). The model is forced by surface wind stresses and surface heat fluxes and evaporation–precipitation fields from the NCEP/NCAR reanalysis project. It spans 73.5°S to 73.5°N latitude with a latitudinal spacing ranging between 1/3° at the equator to 1° at the poles and a longitudinal grid spacing of 1°. The model has 46 levels ranging in thickness from 10 m at the surface to 400 m at depth. The model employs realistic boundaries and bottom topography. The resulting modelled OAM span 1980 January to 2003 March at daily intervals. The ECCO-DA is virtually the same model as ECCO-NDA, but assimilates TOPEX/Poseidon sea surface height observations and covers the periods from 1993 to the present (Chen et al. 2004). The durations and sampling intervals of non-atmospheric polar motion excitations (SPACE2002-AAM) and OAM excitations determined from the four OGCMs are summarized in Table 1. For clarity, the individual contributions from OBP variations and ocean currents will be referred to hereafter as that due to ‘OBP’ and ‘Currents’, respectively.

© 2005 RAS, GJI, 162, 390–398
Table 1. Summary of durations and sampling intervals of polar motion excitation functions from observations (SPACE2002-AAM) and four oceanic general circulation models (OGCMs). (A) OBP terms; (B) Currents terms.

<table>
<thead>
<tr>
<th>Excitation function</th>
<th>Duration</th>
<th>Sampling interval (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE2002-AAM</td>
<td>1976.09–2003.01</td>
<td>1</td>
</tr>
<tr>
<td>POCM</td>
<td>1988.01–1997.12</td>
<td>3</td>
</tr>
<tr>
<td>BOM</td>
<td>1992.10–2000.06</td>
<td>1</td>
</tr>
<tr>
<td>ECCO-NDA</td>
<td>1980.01–2002.03</td>
<td>1</td>
</tr>
<tr>
<td>ECCO-DA</td>
<td>1993.01–2003.12</td>
<td>0.5</td>
</tr>
</tbody>
</table>

4 COMPARISON AND RESULT

The data to be analysed span a 5-yr overlapped period from 1993 to 1997. In the studies of seasonal and intraseasonal variations, non-atmospheric polar motion excitations and four OAM contributions are all re-sampled into 10-day intervals, to match the temporal resolution of ECCO-DA OAM currents term (Sections 4.1 and 4.2). In the studies of high-frequency variations of 4–20 days daily BOM and ECCO-NDA OAM contributions are compared with non-atmospheric polar motion excitations. The POCM and ECCO-DA OAM results are not employed in the high-frequency study because their larger sampling intervals will hinder analyses on the high-frequency band.

4.1 Seasonal variations

A linear combination of a trend, annual, semi-annual and terannual terms is fitted to non-atmospheric polar motion excitations and four OAM contributions in a least squares sense. Table 2 shows the results of this fit for the amplitude A and phase \(\alpha \) of the prograde (subscript p) and retrograde (subscript r) components of the excitation of annual polar motion defined by (Munk & MacDonald 1960)

\[
\chi(t) = A_p e^{i\alpha_p} e^{i\sigma(t - t_0)} + A_r e^{i\alpha_r} e^{-i\sigma(t - t_0)},
\]

where \(\sigma \) is the annual frequency and the reference date \(t_0 \) is 1 January 1990, 0000UT.

Fig. 2 shows the phasor diagram of the prograde (top) and retrograde (bottom) components of annual wobble excitation functions from observations (SPACE2002-AAM) and four OGCMs. It is seen that relatively large discrepancies exist between POCM and the other

Table 2. Amplitude and phase of the prograde and retrograde components of annual polar motion excitation functions from observations (SPACE2002-AAM) and four OGCMs. The reference date for phase is 1990 January 1, 0000UT. (A) OBP terms; (B) Currents terms; (C) OBP plus Currents terms.

<table>
<thead>
<tr>
<th>Excitation function</th>
<th>Annual prograde</th>
<th>Annual retrograde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ampli., mas</td>
<td>Phase, deg</td>
</tr>
<tr>
<td>SPACE2002-AAM</td>
<td>8.53</td>
<td>38.3</td>
</tr>
<tr>
<td>POCM</td>
<td>5.99</td>
<td>133.6</td>
</tr>
<tr>
<td>BOM</td>
<td>2.53</td>
<td>37.7</td>
</tr>
<tr>
<td>ECCO-NDA</td>
<td>3.04</td>
<td>65.8</td>
</tr>
<tr>
<td>ECCO-DA</td>
<td>3.84</td>
<td>73.5</td>
</tr>
<tr>
<td>POCM</td>
<td>1.65</td>
<td>49.8</td>
</tr>
<tr>
<td>BOM</td>
<td>2.10</td>
<td>24.0</td>
</tr>
<tr>
<td>ECCO-NDA</td>
<td>2.10</td>
<td>50.3</td>
</tr>
<tr>
<td>ECCO-DA</td>
<td>2.77</td>
<td>25.5</td>
</tr>
<tr>
<td>POCM</td>
<td>6.39</td>
<td>118.7</td>
</tr>
<tr>
<td>BOM</td>
<td>4.60</td>
<td>31.5</td>
</tr>
<tr>
<td>ECCO-NDA</td>
<td>5.10</td>
<td>59.5</td>
</tr>
<tr>
<td>ECCO-DA</td>
<td>6.06</td>
<td>53.6</td>
</tr>
</tbody>
</table>

Fig. 2. Phasor diagrams of the prograde and retrograde components of annual polar motion excitation functions (as of January 1) from observations (SPACE2002-AAM) and four oceanic general circulation models (OGCMs). POCM: the parallel ocean climate model; BOM: a barotropic ocean model; ECCO-NDA: the Estimating the Circulation and Climate of the Ocean (ECCO) non-data-assimilating model; ECCO-DA: the ECCO data-assimilating model.
three models either for the prograde components or for the retrograde components. Figs 3 and 4 separately exhibit the OBP terms and currents terms of OAM excitations at annual timescale. Obviously, the discrepancy between POCM and the other three OGCMs comes predominantly from the disparity in the OBP terms. The systematic discrepancy is mainly due to the difference in the forcing wind fields. The POCM model is driven by the ECMWF operational wind field while the other models are driven by surface wind fields derived from the NCEP reanalysis project. An examination of the AAM produced from NCEP Reanalysis and ECMWF operational models has shown differences between these models at annual period. The OAM estimates produced by different ocean models are directly affected by the atmospheric models used to force the ocean model (Johnson 2005).

Tables 3 lists corresponding results for the excitation of semiannual and terannual polar motion. Fig. 5 shows the phasor diagram of the prograde and retrograde components of the semi-annual wobble excitation functions from observations (SPACE2002-AAM) and four OGCMs. The four models agree quite well in phase at the prograde semi-annual period. For either prograde or retrograde components, the POCM result shows better agreement in phase with observed non-atmospheric polar motion excitation than the other three ocean models.

Fig. 6 displays the phasor diagram of the prograde and retrograde components of the terannual wobble excitation functions from observations (SPACE2002-AAM) and four OGCMs. In view of Figs 2–6, considerable discrepancies remain between observed non-atmospheric polar motion excitations and the four OAM contributions at annual, semi-annual and terannual frequencies. This may reflect errors in observed and/or modelled excitations, but may also imply that other unaccounted sources, like continental water storage change, may have important effects on seasonal polar motion.
from BOM and ECCO-NDA within the high-frequency band. The trend, annual, semi-annual and terannual variations have been removed from all time-series by least-squares fitting. The multitaper technique of Thomson (1982) is applied in computing the spectra; it provides robust, minimum-leakage spectral estimates. Seven orthogonal tapers with time-bandwidth of 4π were adopted. The horizontal dash lines in A1 and A2 indicate 95 per cent confidence threshold for the squared coherence. It is obvious that the BOM estimates exhibit stronger coherence with SPACE2002-AAM than the ECCO-NDA estimates. The squared coherence between BOM and SPACE2002-AAM exceeds 95 per cent threshold at a broader high-frequency band than that between ECCO-NDA and SPACE2002-AAM. Meanwhile, the coherence phase between BOM and SPACE2002-AAM has smaller variation amplitude around the zero-degree phase line than that between ECCO-NDA and SPACE2002-AAM.

We further focus our study within a high-frequency band of 4–20 days. The high-frequency variation of 4–20 days is extracted by removing from each excitation time-series a trend and seasonal terms by passing the residual series through a Butterworth bandpass filter of order 2 with cut-off frequencies of 1/4 and 1/20 cycles per day. The correlation study and variance analysis result between non-atmospheric polar motion excitation and oceanic effects modelled from BOM and ECCO-NDA is listed in Table 5. Similar to the results in intraseasonal band, for both BOM and ECCO-NDA, the OBP term explains more observed non-atmospheric excitation than the current term. Combined OBP and current excitations can account for more observed excitation than either one alone.

By comparing the four OGCM estimates, we further notice that the ECCO-DA estimate yields the best agreement with observations among the four OGCMs. This model shows the strongest correlation (as high as 0.79) with non-atmospheric polarization excitations and reduces the variance of non-atmospheric excitations by 60.9 per cent, about 10–20 per cent more than those explained by the other three models. This may, from an independent point of view, substantiate that the ECCO ocean model, after assimilating the TOPEX/Poseidon sea surface height observations, produces relatively good simulation of oceanic variations within the intraseasonal frequency band (Stammer et al. 2002).

4.3 High frequency variations of 4–20 day

Fig. 7 shows multitaper squared coherences (A1, A2) and phases (B1, B2) of SPACE2002-AAM with oceanic excitations modelled from BOM and ECCO-NDA within the high-frequency band. The trend, annual, semi-annual and terannual variations have been removed from all time-series by least-squares fitting. The multitaper technique of Thomson (1982) is applied in computing the spectra; it provides robust, minimum-leakage spectral estimates. Seven orthogonal tapers with time-bandwidth of 4π were adopted. The horizontal dash lines in A1 and A2 indicate 95 per cent confidence threshold for the squared coherence. It is obvious that the BOM estimates exhibit stronger coherence with SPACE2002-AAM than the ECCO-NDA estimates. The squared coherence between BOM and SPACE2002-AAM exceeds 95 per cent threshold at a broader high-frequency band than that between ECCO-NDA and SPACE2002-AAM. Meanwhile, the coherence phase between BOM and SPACE2002-AAM has smaller variation amplitude around the zero-degree phase line than that between ECCO-NDA and SPACE2002-AAM.

We further focus our study within a high-frequency band of 4–20 days. The high-frequency variation of 4–20 days is extracted by removing from each excitation time-series a trend and seasonal terms and by passing the residual series through a Butterworth bandpass filter of order 2 with cut-off frequencies of 1/4 and 1/20 cycles per day. The correlation study and variance analysis result between non-atmospheric polar motion excitation and oceanic effects modelled from BOM and ECCO-NDA is listed in Table 5. Similar to the results in intraseasonal band, for both BOM and ECCO-NDA, the OBP term explains more observed non-atmospheric excitation than the current term. Combined OBP and current excitations can account for more observed excitation than either one alone.

By comparing the BOM and ECCO-NDA simulation results, it is easily seen that the BOM estimates could explain about half of the observed variance, over twice as much as that by ECCO-NDA (51.6 per cent vs. 24.8 per cent), and also shows considerably better correlation with observations (0.73 vs. 0.54). This is consistent with the frequency-domain coherence result shown in Fig. 7. The superiority of BOM estimates to those from ECCO-NDA in modelling high frequency OAM variation may result from two factors:

1. **BOM is forced by the surface wind field as well as barometric pressure, while the atmospheric pressure is not included in the ECCO-NDA model’s forcing fields.** This result demonstrates the importance of including pressure-forcing effects when modelling the high-frequency variability of the ocean (Ponte & Ali 2002).
generally better agreement with observed non-atmospheric polar motion excitation than the other three ocean models. At intraseasonal timescales, ECCO-DA yields better agreement with observations, and reduces the variance of non-atmospheric excitations by ~60, 10–20 per cent more than those explained by the other three models. However, at the very short periods of 4–20 days, the BOM estimates could explain about half of the observed variance, twice as much as that by ECCO-NDA, and also shows considerably better correlation with observations. The superiority of BOM to ECCO-NDA in modelling very high-frequency OAM variations might indicate the characteristically barotropic oceanic motion at short periods and the importance of including pressure-forcing effects when modelling the high-frequency variability of the ocean.

The considerable discrepancies among four OGCMs in the estimation of oceanic excitations to the Earth’s polar motion might be owing to differences in modelling schemes and methods, ambiguity between barotropic and baroclinic effects, the Bossinesq
approximation conserving ocean volume rather than conserving mass and non-global coverage of OGCMs (Greatbatch 1994; Wahr et al. 1998). Mass-conserving OGCMs (e.g. Huang et al. 2001) that assimilates altimeter sea level, sea surface temperature, and salinity data and is driven by winds, fluxes, and also atmospheric pressure that are being developed may be useful in a better understanding of the effects of these model differences. In the longer term, fully coupled models that conserve mass within the full atmosphere–ocean–hydrosphere system are needed. Assimilation of satellite gravity observations, such as those from the Gravity Recovery and Climate Experiment mission (http://www.csr.utexas.edu/grace/), could lead to important improvement in OGCM development, as well.

Acknowledgments

We are grateful to T. J. Johnson (USNO) and an anonymous reviewer for their insightful comments, which led to improvements in the presentation. We thank R. M. Ponte (AER) for helpful discussions. We also thank R.S. Gross (JPL), R. M. Ponte and T. J. Johnson for providing the OAM data. YHZ and XHL were supported by the National Natural Science Foundation of China (10273018, 10133010) and the Key Project of Chinese Academy of Sciences (KJCX2-SW-T1). JLC and CR W were supported by the NASA Solid Earth and Natural Hazards Program (under grants NNG04G060G, NNG04GP70G).

Table 4. Cross correlation coefficients between intraseasonal SPACE2002-AAM and oceanic effects modelled from the four OGCMs, and variance reductions (in percentage) when the oceanic excitations are removed from SPACE2002-AAM. (A) OBP terms; (B) Currents terms; (C) OBP plus Currents terms.

<table>
<thead>
<tr>
<th>Excitation function</th>
<th>X Corr. coef. Reduced var. (per cent)</th>
<th>Y Corr. coef. Reduced var. (per cent)</th>
<th>X + Y Corr. coef. Reduced var. (per cent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) OBP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POCM</td>
<td>0.42</td>
<td>17.0</td>
<td>0.65</td>
</tr>
<tr>
<td>BOM</td>
<td>0.54</td>
<td>28.8</td>
<td>0.60</td>
</tr>
<tr>
<td>ECCO-NDA</td>
<td>0.61</td>
<td>35.8</td>
<td>0.63</td>
</tr>
<tr>
<td>ECCO-DA</td>
<td>0.66</td>
<td>41.9</td>
<td>0.74</td>
</tr>
<tr>
<td>(B) Currents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POCM</td>
<td>0.47</td>
<td>22.5</td>
<td>0.62</td>
</tr>
<tr>
<td>BOM</td>
<td>0.55</td>
<td>28.0</td>
<td>0.54</td>
</tr>
<tr>
<td>ECCO-NDA</td>
<td>0.54</td>
<td>27.2</td>
<td>0.60</td>
</tr>
<tr>
<td>ECCO-DA</td>
<td>0.53</td>
<td>26.8</td>
<td>0.70</td>
</tr>
<tr>
<td>(C) OBP+Currents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POCM</td>
<td>0.63</td>
<td>39.6</td>
<td>0.69</td>
</tr>
<tr>
<td>BOM</td>
<td>0.67</td>
<td>45.0</td>
<td>0.65</td>
</tr>
<tr>
<td>ECCO-NDA</td>
<td>0.74</td>
<td>54.7</td>
<td>0.69</td>
</tr>
<tr>
<td>ECCO-DA</td>
<td>0.78</td>
<td>61.3</td>
<td>0.80</td>
</tr>
</tbody>
</table>

X: x component; Y: y component; Corr. coef.: correlation coefficient; Reduced var.: reduced variance.

Figure 7. (A1, A2) multitaper squared coherences and (B1, B2) phases of the SPACE2002-AAM with oceanic excitations modelled from the BOM and ECCO-NDA. A trend, annual, semi-annual and terannual variations have been removed from all time-series by least-squares fitting. The horizontal dash lines in A1 and A2 indicate 95 per cent confidence threshold for the squared coherence.
Table 5. As in Table 4 but for high-frequency variations of 4–20 days. The POCM and ECCO-DA are not included because their relatively large sampling intervals obstruct analyses of the high-frequency variations.

<table>
<thead>
<tr>
<th>Excitation function</th>
<th>X</th>
<th>Y</th>
<th>$X + iY$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Corr. coef.</td>
<td>Reduced var. (per cent)</td>
<td>Corr. coef.</td>
</tr>
<tr>
<td>(A) OBP</td>
<td>0.66</td>
<td>42.6</td>
<td>0.67</td>
</tr>
<tr>
<td>ECCO-NDA</td>
<td>0.55</td>
<td>22.6</td>
<td>0.50</td>
</tr>
<tr>
<td>(B) Currents</td>
<td>0.33</td>
<td>7.3</td>
<td>0.58</td>
</tr>
<tr>
<td>ECCO-NDA</td>
<td>0.22</td>
<td>-2.2</td>
<td>0.33</td>
</tr>
<tr>
<td>(C) OBP + Currents</td>
<td>0.71</td>
<td>49.5</td>
<td>0.73</td>
</tr>
<tr>
<td>ECCO-NDA</td>
<td>0.57</td>
<td>26.2</td>
<td>0.52</td>
</tr>
</tbody>
</table>

REFERENCES

